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ABSTRACT

We present a Gaussain model based approach for robust and automatic extraction of roads from very low-
resolution satellite imagery. First, the input image is �ltered to suppress the regions that the likelihood of
existing a road pixel is low. Then, the road magnitude and orientation are computed by evaluating the responses
from a quadruple orthogonal line �lter set. A mapping from the line domain to the vector domain is used to
determine the line strength and orientation for each point. A Gaussian model is �tted to point and matching
models are updated recursively. The iterative process consists of �nding the connected road points, fusing them
with the previous image, passing them through the directional line �lter set and computing new magnitudes
and orientations. The road segments are updated at each iteration, and the process continues until there are no
further changes in the roads extracted. Experimental results demonstrate the success of the proposed algorithm.
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1. INTRODUCTION

The huge amount of satellite image data requires robust and fully automatic methods to interpret the meaningful
image features such as roads, railroads, drainage, and other meaningful curvilinear structures. There exists an
even greater need for a mechanism that handles very low resolution images. Typical road extraction algorithms
consist of two stages: the detection of road points, and the concatenation of those points into road segments. The
detection step is usually supported by topological constraints, e.g., o�setting water bodies, limiting the detection
process within the same isobar. Radiometric road primitives such as maximum curvature, constant width,
intensity smoothness, may provide additional rules for the concatenation step. Many approaches combine a
local criterion based on radiometry within some small neighborhood to discriminate roads from the surrounding
background, and a global criterion to introduce priori information about the structures. Detection is often
performed by an edge1 or line operator,6 di�erential geometry,2 or an analysis of the road pro�le.3 In the
simplest case, a straightforward connection of the detected line pixels is used to describe the road. Dynamic
programming4 can be used to minimize a global cost function, and heuristics included to the minimum cost
path estimation framework,7 Hough transform based curve detection approaches, parametric curve models such
as snakes and B-splines, and Bayesian networks5 are used to aggregate low-level road pixel detection into road
segment estimates.

Most of the proposed road detection algorithms were designed to extract roads from high-resolution images13

and often require user assistance to mark both starting and ending points of road segments. By using various
road features as con�dence measures, a minimum cost path is derived between the start and end nodes. Due to
the noise sensitivity, asymmetry of the contrast at the both sides of the edges, and the diÆculty of obtaining
precise edge directions, edge based methods are inadequate for very low-resolution imagery.

We propose a model based road detection algorithm that �nds road con�dences as well as associated orien-
tations by using the responses from a set of directional line �lters. We previously proposed a road extraction
algorithm.6 Here, we improve upon the road detection by integrating road model functions. The detection
results are further improved by a relevance feedback mechanism. We also provide a solution to recover poorly
visible road segments in the original images. Section II discusses intensity normalization, texture removal, line
�ltering, and computation of the road con�dences. Section III presents extraction of road segments, morpholog-
ical operators, feedback mechanism, and fusion stages. The later section presents experimental results obtained
from images in the SPOT data set.
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Figure 1. Flow diagram: The model feedback loop propagates the road features to the neighboring pixels, and the image
feedback loop enhances the derived road pixels on the input image for the next iteration.

2. LINE FILTER AND ROAD MODEL

In this section, we discuss the �ltering of the redundant spatial texture from the input image, computation of
line strength and orientation, �tting Gaussian models to points, and iterative updating of the point models. A
general ow diagram of the algorithm is shown in Fig. 1.

2.1. Normalization and Texture Removal by Suppression Filter

Depending on the atmospherical and geographical conditions, the lighting of the satellite images substantially
di�er form each other. Thus, the dynamic intensity range of the input image requires adjustment before pro-
ceeding with the extraction of road features. We normalized the input image such that its spectrum covers the
maximum available intensity range 0-2n levels for an n-bits coded image. Normalization process reduces the need
for �ne-tuning of the �lter parameters, and helps to compensate for possible illuminance di�erences between the
various images.

One important observation on the nature of the road points is that such points tend to have a higher intensity
values than their surrounding area. In other words, if a point has similar or lower intensity value than the points
within its immediate neighborhood it is less likely to correspond to a road point. By using a suppression �lter,
we smooth the intensity distribution and remove the low spatial texture without disturbing the edge structure
for such regions. The suppression �lter involves very simple operators. Let I denotes the input image. We
compare the intensity value I(p) of a point p with its neighbors. If the distance is less than a threshold Æ, the
point's intensity value is updated by the average of its neighbors within a local window as

I(p) =

�
�(p) d � Æ
I(p) d > Æ

(1)

d(p) = jI(p)� �(p)j (2)

�(p) =
1

K

X
q2Lp

I(q) (3)

where Lp is the local neighborhood that contains K neighbors of the center point p. We observed that Æ '
4 is a good compromise for 28 bits coded images after the normalization. The iterative application of the
suppression �lter would e�ectively remove the small texture while preserving the roads due to the fact that
small di�erences are suppressed more at each cycle. However, we found the amount of the change in the image
decreases signi�cantly after the �rst pass.



2.2. Line Filter

A line segment can be characterized as an elongated rectangular region having a homogeneous intensity level that
is bounded on both its longer sides by homogeneous regions having a di�erent intensity level. The assumption
that road segments will have the same contrast on both sides is rarely true for real images. Therefore, a semi-
linear structure that �nds step edges on the either side of the line, was devised as inspired by Vanderburg.9

An adequate line detector should also be able to detect very narrow lines (1-2 pixels), as well as wider ones
(5-6 pixels). Unlike speckles and edges, a line point is generally bordered by other adjoining line points located
on opposite sides. Hence, to �lter out image noise and avoid detecting sparks as road points, we use a �lter
which produces higher scores for the longer line structures. The �lter template is stretched along its detecting
orientation. However, using only two of such templates, as done by orthogonal pairs in edge detection, limits the
accuracy of line detection especially for lines that are diagonally oriented. This is accomplished by extending the
�lter template on the direction perpendicular to its detection orientation to include the distant points from the
line center. However, such an extension neglects the continuity property of the lines and introduces false errors
especially in presence of speckle noise. To prevent errors, i.e. catching sparks as road points, the �lter template
is stretched along its detecting orientation. Yet, using only two of such templates, as done by orthogonal pairs
in the edge detection, limits the accuracy of the line detection especially for lines that are diagonally oriented.
Therefore, we employ a compass type directional �lter set containing multiple line �lters tuned at the di�erent
orientations. Here, compass means each separate �lter in the bank operates at a di�erent orientation � and the
entire set covers the full orientation spectrum [0; �]. For a M�N kernel, the basic �lter operating at orientation
� is given as

g(i; j) = cos

�
�(i cos � � j sin �)

2M

�
cos

�
�(i sin � + jcos�)

N

�
(4)

where i = 0; ::;M and j = 0; ::; N . The constants kernel size M;N determine the shape and width of the
matching template. The basic �lter is designed such that it has higher values towards the center to make it less
sensitive to the noise. Since a line is basically constructed by two opposite edges, the basic �lter g consists of
two zero-padded edge �lter templates ga; gb to detect the step edges on the either side of the line such that

ga(i; j) =

�
g(i; j) i > 0
0 i < 0

; gb(i; j) =

�
g(i; j) j > 0
0 j < 0

From the half template responses, a line strength s(p; �i) at each point p for each �lter gi is calculated as

s(p; �i) =

�
gai + gbi gai + gbi � 0

0 gai + gbi < 0
(5)

A problem of fusing all of the these line strengths immediately arises. One cannot directly sum up and average
the orientation angles because of the ambiguity at the limits of the angular spectrum [0; �). For example, two
lines with orientation angles � � � and � lie in similar directions, however averaging their orientation angles
gives �

2
which is almost perpendicular to both lines. Essentially, having relatively signi�cant strengths for any

orthogonal �lter pair is an ambiguity.

To eliminate incompatible �lter outcomes, and to fuse any number of line strengths, we use a mapping from
line directions to vectors such that the perpendicular line strengths become opposite to each other. Our reasoning
is that as a line orientation becomes more similar to a directional �lter, its response from the perpendicular �lter
should attenuate. This property can be exploited to �nd the orientation of the lines which lie between compass
�lter orientations instead of just selecting the direction of the �lter having the maximum magnitude. If the �lter
directions are represented such that perpendicular responses cancel each other's e�ect out, then it is possible to
fuse all the �lter responses to derive an aggregated line orientation and strength. Thus, the angular spectrum of
orientation is extended from [0; �) to [0; 2�) and s(p; �i) ! ~s(p; !i) = s(p; �i)e

j2�i where !i=2�i, s(p; �i) is the
response and direction for the ith directional template. Thus, perpendicular �lter pairs are converted to inverse
directions, and likewise non-perpendicular ones are correlated. By adding the transformed vectors, we subtract
the responses of the perpendicular �lters and amplify those of non-perpendicular �lters as s(p) =

P3

i=0 ~s(p; !i)
for quadruple �lters. The resulting vector is transformed to a line by halving the phase component.
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Figure 2. Gaussian-based road model and its rotated version.

The above analysis provides point-wise evaluation of the line likelihood. To achieve local consistency, the
mapping is performed again within a window, preferably circular, at each pixel position. Application of the
above mapping attenuates the line strengths if the computed line orientations within the window exhibit a high
variance. After normalization to unity, the line magnitude and the line orientation are obtained as

m(p) =
j~s(p)j

j~smaxj
; �(p) =

6 ~s(p)

2
: (6)

where ~smax is the maximum line strength computed for the current image.

2.3. Gaussian-Based Road Model

A major problem of road extraction algorithm is the disconnected road segments due to the poor visibility of
the roads in the original image. Often roads are divided into several short segments, or completely missing
from the image. For such cases, the possible road points that are not perceptible by the line �lters should
be enhanced using both the underlying image intensity distribution and the line detection results. We �t a
Gaussian based model (Fig.2) at each image point to represent the likelihood of being a road point. These
models are evaluated recursively to determine the correlation between the neighboring points. At each iteration,
the local neighborhood of the point is searched for possible road models that match the current model. The
model con�dence is ampli�ed if there is a neighboring road model at the same orientation, similarly in case no
such neighbor exists the current model con�dence is attenuated. The road model is de�ned as

r(p) = (1�
x2r
M2

)(e�
2jy2r j

N2 )(cos
�yr
N

)m(p) (7)

where M;N is the window size, and xr = x cos �(p) + y sin �(p); yr = �x sin �(p) + y cos �(p). Then the models
are simply updated using the K neighboring points models within the window Lp as

rk(p) =
1

K

X
q2Lp

r(q): (8)

At each update, the current road models are extended along their orientations if there is even a weak line model
present at the extension points. The update operation is repeated until the missing road segments at a certain
preset length can be recovered.

3. ROAD SEGMENTS AND FUSION

3.1. Connected Component Analysis

Given the con�dences, the road points that have a relatively higher probability are linked into curvilinear
segments. A common two-pass connected component analysis is designed such that it can recursively link line
points possessing similar characteristics.



3.2. Irregularity Removal

The road segments generated by the connected component analysis may be contaminated by topological irregu-
larities such as spurs and closed loops. Before feeding back the road segments to the input image, these deviations
are removed by the morphological operators. In addition, thinning of road segments is required since the con-
necting stage may produce wide road segments. A morphological operator using the hit-and-miss transform8 is
utilized to accomplish the thinning of the road map. Like other morphological operators, the behavior of the
thinning operation is determined by its structuring elements that are given as

T thin
1

=
1 1 1

0 0 0

; : : : ; T thin
8

=
1 1

1 0

0 0

: (9)

Thinning is done by translating the origin of the structuring element T thin
i to each point position in the binary

road image, and then at each position we compare the structuring element with the underlying image points.
A total of eight comparisons is performed for all eight clockwise rotated versions of the original structuring
element. During the iterative passes of the algorithm, if the foreground (1) and background (2) points in the
structuring elements exactly match the foreground (road) and background (non-road) points in the road map,
then the point underneath the origin of the structuring element is set to the background (non-road). Otherwise
it is left unchanged. Thinning is repeated until there is no change detected.

T spur
1

=
1 1 0

0 0

0 0 0

; : : : ; T spur
8

=
1 0 0

1 0

0 0 0

: (10)

Spurs are mainly caused by the noise in the input image and are removed by using modi�ed thinning operators.
Using a modi�ed structuring element T spur

i in the thinning algorithm causes an erosion from the start points
of the segments. The structuring elements are applied in a similar way as explained above, but the points are
only marked. A marked road segment is considered a spur if the total number of points in the segment is much
larger than the length of the main chord of the segment. This constraint distinguishes straight segments from
the curved ones. Before the feedback stage, the shorter road segments and the segments that are considered to
be spurs are removed from the road map.

3.3. Fusion and Relevance Feedback

The initial connected component analysis is done without using any priori information to validate the accuracy
of the obtained segments. Any additional road information supplied to the feature detection stage, which is the
directional �lter set in our case, evidently improves the quality of the estimation of road con�dences and thus the
tracing results. Unlike the initial image, the extracted road segments are clean, e.g., do not contain speckle type
of noise or similar spatial impurities, which cause excessive spurs and diversions. For that reason, the orientation
values computed by using the extracted road segments will be more accurate. Since the tracing stage overcomes
road discontinuities in the input image by �lling in the gaps in the road con�dence map as explained before,
the new line strengths and as a result the new road con�dences will have less discontinuities. Also, using the
extracted road segments as a feedback can restrain the con�dence values of the background points.

Hence, the initial road map is fused with the input image, the directional line �lters are applied to the fused
image, and new road con�dences and orientations are computed as described in the previous section. At an
image point, linear weighting blends the magnitude values of the road map and the previous image intensity
values as

It(p) = (1� �)It�1(p) + �m(p) (11)

and the new orientation is computed after passing the result image from the �lter set again. The fusion loop is
executed until the change between the extracted road segments at two consecutive iteration becomes insigni�cant.



4. RESULTS AND CONCLUSION

We tested our road extraction algorithm on panchromatic images. Sample images are presented in Fig. 3-a. In
these very-low resolution satellite images, the average road width corresponds to 1-3 pixels, and the images are
contaminated by speckle noise. Since the dynamic intensity range is very low, the input images are required to
be normalized to warp the intensity values to the 28 levels. We used 4 line �lters operating at 0; �=4; �=2; 3�=4
to compute the line strength and orientation. The line �lter window size was set to 5�5 due to the narrow
structure of the roads. In case of detection wider road segments, the original image may be subsampled such
that the average road width becomes 1-3, or the line �lter window is enlarged accordingly. Although the �rst
approach is computationally faster, it is also more sensitive to the sampling impairments such as roads becoming
disconnected. The road model window is set to 5� 5 similarly. The model update mechanisms is executed twice
to �ll the gaps of 5 pixels long. After spurs and small loops are removed, the road segments are blended into the
previous image by weighting by � = 0:05. The enhanced images at the second iteration are also shown in the
Fig. 3-b. The intermediate road detection results of the feedback loop are shown in Fig. 3-c. The �nal results
are shown in Fig. 3-d. The fusion loop was iterated 15 to 20 on average times depending to the density of the
roads in the input image. As visible in the enhanced images, the feedback mechanism signi�cantly improved the
visibility of the road segments in the original images, and the proposed road models achieved to recover most of
the road gaps due to poor intensity range.

For the presented sample images and the other SPOT test images, no �ne-tuning of the �lter, road model,
fusion, or other system parameters was necessary. The proposed algorithm extracted the most visible road
segments accurately without requiring additional user interaction. The localization of the road segments are also
more precise than the existing parametric line/curve �tting approaches since our method strictly traces roads
instead of approximating them.
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Figure 3. (a) Sample input images. (b) Enhanced images at the 2nd iteration of the fusion mechanism. (c) Detected
road segments at 4th iteration. (d) Final road segments.


